
104 july 2014 july 2014 105

PROJECTS
RWD RWD

Developers are obsessed with file size. When we
look for a plug-in, we hunt for hours for the one

with the fewest kilobytes. We rewrite our entire site
so we don’t have to include the ‘bloated’ jQuery
library. We minify, concatenate and uglify our
JavaScript until it becomes deliberately unreadable.
And then we put our tiny, tiny JavaScript file on the
same page as a 400kb image.

The overall file size of a page, known as the ‘page
weight’, is a major issue for all devices, as the success
of your site may be determined by its load time,
but it is of particular concern when there is a poor
connection speed. If you are sending an image with a
resolution higher than that of the device’s screen, a
proportion of the data you are sending is completely
unused: if the dimensions of the image are twice that
of the screen, 75 per cent of the data goes to waste.
It also applies additional pressure to the device’s
processors, responsible for scaling the image to fit the
screen. When you start adding rich animations to your
page, scaling becomes especially problematic.

Responsive design techniques have solved many of
the layout issues plaguing mobile users, but there are
still challenges to overcome when it comes to images:

l �Ensuring that the most appropriate version of an
image is downloaded for the current device

l Avoiding downloading multiple versions of an image
l �Determining the right time during page load to

choose and load a version of an image
l Keeping markup concise
l Browser support

Over the last few years, three different techniques
have been proposed for foreground responsive
images: srcset , srcN and the <picture> element.
Recently representatives from each of the browsers
have settled on using the <picture> element.

Currently <picture> can only be emulated with a
polyfill, but browser support is expected to follow in
the coming months. A recent Indiegogo campaign
(netm.ag/blink-255) has ensured the syntax will be
implemented in the Blink renderer used in Chrome
and Opera, and a stretch goal will cover WebKit
and Safari; while the Firefox team is also actively
developing its own implementation.

As detailed in Mat Marquis' article on the previous
page, the <picture> element uses standard media
queries expressions for fine control over which image
to display. Based on the matching media query, it
uses a simplified version of srcset to determine the
image source to load. You can serve different images
for screens with different pixel densities by adding a
parameter after the filename:

<picture>
	� <source media="(min-width: 40em)” srcset=“dog-large.

jpg 1x, dog-large-hd.jpg 2x" />
	 <source srcset="dog-small.jpg 1x, dog-small-hd.jpg 2x" />
	
</picture>

Additionally, we can stop our images from
overflowing from their containing box by setting a
 max-width value in our CSS:

img {
	 max-width: 100%;
}

If the image is not part of the page content or it is not
critical to interaction but is instead part of the design,
the simplest option is to include it with the background
or background-image CSS property and then use media
queries to load in the correct image size. We can
supplement this technique with the background-size
property to ensure our image fits the element it is
contained within:

.container {
	� background: url(/img/bg-container-small.jpg) no-repeat

top left;
	 background-size: cover;
}
@media screen and (min-width: 768px) {
	 .container {
		 background-image: url(/img/bg-container-large.jpg);
	 }
}

Generating responsive images
Generating a set of responsive images for your entire
site manually would make it difficult to maintain.
Thankfully, we can automate this process using Grunt
and a task called Grunt Responsive Images (netm.ag/
grs-255). This matches a set of files and folders and
resizes the images to the dimensions you require.

If you’re unfamiliar with Grunt, it is a task runner
that automates the tiresome parts of frontend
development such as generating Sass files, linting
JavaScript and minification. Chris Coyier has written a
good article on getting started: netm.ag/grunt-255.

Once you have Grunt up and running in your
project, adding the Grunt Responsive Images task is
straightforward. Navigate to your project’s directory
in Terminal or Command Prompt, then type:

npm install grunt-responsive-images --save-dev

This will download the task and save it to your
 packages.json file. You also need to download
an image-processing client to do the heavy

 rwd

Automating
responsive Images
Andi Smith explores techniques for integrating responsive images
into your site and reveals how to use Grunt to generate them automatically

The Retina
Revolution technique

The ‘Retina revolution’ technique was first documented by
Daan Jobsis (netm.ag/retina-255). Through a number of tests,

he discovered that heavy compression doesn’t significantly affect
the quality of images with a large number of pixels, even when the
file size of a high-resolution image is reduced below that of the
base version. The image is then scaled within the browser, which
results in a sharper image with few noticeable artifacts.

Moving forward with this discovery, one of the optimum
strategies found was to save the images at 2.2 times the resolution
required with a very low image quality.

To do this technique with Grunt Responsive Images, you need to
enable upscaling and set a quality value to 25%. For example:

	 options: {
		� sizes: [{ height: 440, name: ‘small’, quality: 25, upscale:

true, width: 880 },
		� { height: 880, name: ‘medium’, quality: 25, upscale:

true, width: 1760 },
		� { height: 1320, name: ‘large’, quality: 25, upscale:

true, width: 2200 }]
	 },

Be careful with scaling images: they require the device to run extra
processing, so if you have to support older devices or you have rich
animations on your site, you may experience lower frame rates.

 Focus on

Abou t t he au thor

Andi Smi th
w: andismith.com
t: @andismith
areas of expertise:
Frontend development
q: When was the last
time you cried?
a: xxx xxx x x xxxx xxxx
xxx xxxxxxx x xx xxx xx
xxxx x xxxx xx x xxxx

Generating responsive
images manually
would make sites
difficult to maintain

More details Daan Jobsis’s original article on the Retina revolution technique

Download
the files here!

All the files you need for
this tutorial can be found at

netm.ag/responsive-255

 video
Watch an exclusive
screencast of this
tutorial created
by the author:
netm.ag/tut5-255

106 july 2014 july 2014 107

PROJECTS
RWD RWD

		 }
	 }

Our carousel task specifies three sizes for our
images: 400 x 200, 800 x 400 and 1,000 x 600. By
default these sizes are treated as maximum value
boundaries, so the image will be resized until the first
of these values has been matched. We do not have to
specify both dimensions: the task can resize with just
one and maintain the aspect ratio of the image.

Our task also specifies the path where we can find
the source images to resize, using four parameters:

l expand allows us to build the files list dynamically
l � cwd specifies the original path where we will find

the files specified in src
l � dest specifies the destination path to save our new

images to
l � src specifies the image file paths themselves,

relative to cwd . Any paths we include in here will be
copied to the destination structure. We can use
 **/* to specify any images that sit in this directory
or any directories below the path we have specified
so far; and we can use .{gif,jpg,png} to specifically
target files with the extensions .gif, .jpg or .png.

	 files: [{
		 expand: true,
		 src: [‘images/carousel/**/*.{jpg,gif,png}'],
		 cwd: ‘./src/',
		 dest: ‘./dest/‘
	 }]

It’s important the src and dest paths are different,
or when the task is run a second time, it will process
the images generated by the previous run.

Now run the task by going to Terminal or Command
Prompt, navigating to the project directory and typing:

grunt responsive_images

The task will scan the source path and resize any
images it finds, saving the output to the destination
path we specified. By default, the filenames will be
suffixed with -400x200 , -800x400 and -1000x600 . To
change this, we can add a name property to our size
options. This has the advantage that if you change the
dimensions at a later date, you do not need to change
the HTML where you include these images.

	 options: {
		 sizes: [{ height: 200, name: ‘small’, width: 400 },
			 { height: 400, name: ‘medium’, width: 800 },
			 { height: 600, name: ‘large’, width: 1000 }]
	 },

The images generated will have kept their aspect
ratio by default, and consequently will have used the
width and height parameters specified as maximum
value boundaries. This is useful for images within
articles, but may not be as useful for a carousel where
we would expect our images to have a fixed height.

We can tell the Grunt Responsive Images task to
resize and crop our image in order to maintain a fixed
size by adding an aspectRatio property and setting it to
 false . We can control the crop by specifying a
 gravity value. By default, gravity is set to 'Center' ,
but it can be set to 'North' , 'South' , 'East' , 'West' , or a
combination of these, like 'NorthWest' :

	 options: {
		� sizes: [{ aspectRatio: false, gravity: ’NorthWest’,

height: 200, name: ‘small’, width: 400 },
			� { aspectRatio: false, gravity: ’Center’, height: 400,

name: ‘medium’, width: 800 },
			� { aspectRatio: false, gravity: ‘Center’, height: 600,

name: ‘large’, width: 1000 }]
	 },

Now we have our images correctly sized and
ready for our responsive site, we can add them to
our carousel using one of the responsive imaging
techniques mentioned previously.

You can read more about Grunt Responsive Images
on the task's GitHub page (netm.ag/grs-255). Many
more options are available and new options are being
added all the time.

processing. Grunt Responsive Images can use either
GraphicsMagick (graphicsmagick.org) or ImageMagick
(imagemagick.org). GraphicsMagick is the faster of the
two libraries, and the default library used. If you’re
using a Mac and Homebrew you can install it with:

brew install GraphicsMagick

Alternatively, install it from the official website.
Once GraphicsMagick is installed, open up your
 Gruntfile.js and add the following line to load the task:

grunt.loadNpmTasks(‘grunt-responsive-images');

Next, add a section named responsive_images to the
data object passed into grunt.initConfig() :

	 grunt.initConfig({
		 ...
		 responsive_images: {
		 }
	 });

Within this section, we can specify multiple tasks,
which is useful if we want to apply different rules to
different sets of images. For example, you may wish to
resize your blog’s images to one size and the images
in your homepage carousel to another. Let’s add a task
for the homepage carousel:

	 responsive_images: {
		 carousel: {
			 options: {
				 sizes: [{ height: 200, width: 400 },
					 { height: 400, width: 800 },
					 { height: 600, width: 1000 }]
			 },
			 files: []

further information
If you would like to know more about responsive images,
the following links discuss the techniques covered in this

article in more detail:

More information:
l �The Grunt Responsive Images website:

andismith.com/grunt-responsive-images
l �The srcset specification: dev.w3.org/html5/srcset
l �The <picture> specification: picture.responsiveimages.org
l �The Responsive Images Community Group, a group dedicated to

finding responsive image solutions: responsiveimages.org
l �Ethan Marcotte’s article on fluid images: netm.ag/fluidimages-255

More responsive image solutions:	
l �The adaptive images technique, a server-side responsive image

technique: adaptive-images.com
l �ImagerJS, a temporary solution for displaying responsive images

created by BBC News: github.com/BBC-News/Imager.js
l �HiSRC, a jQuery adaptive image plug-in: github.com/1Marc/hisrc
l �A up-to-date comparison chart showing the pros and cons of

different responsive image techniques: netm.ag/chart-255

Image-processing libraries:	

 resources

Grunt Responsive
Images generates
responsive images for
your site automatically

Action group The Responsive Images Community Group (RICG) is a group
of developers dedicated to finding markup-based responsive image solutions

Automated resize Using
Grunt Responsive Images,
you can resize and crop
your images to match
your site's requirements

Power tool The GraphicsMagick library powers Grunt Responsive Images

